Unbounded Perturbations of Nonlinear Second-Order Difference Equations at Resonance
نویسندگان
چکیده
منابع مشابه
Research Article Unbounded Perturbations of Nonlinear Second-Order Difference Equations at Resonance
متن کامل
On a System of Second-Order Nonlinear Difference Equations
This paper is concerned with dynamics of the solution to the system of two second-order nonlinear difference equations 1 1 1 n n n n x x A x y + − − = + , 1 1 1 n n n n y y A x y + − − = + , n = 0,1, , where ( ) 0, A∈ ∞ , ( ) 0, i x− ∈ ∞ , ( ) 0, i y− ∈ ∞ , i = 0, 1. Moreover, the rate of convergence of a solution that converges to the equilibrium of the system is discussed. Finally, some num...
متن کاملOscillation of second order nonlinear neutral delay difference equations
In this paper sufficient conditions are obtained for oscillation of all solutions of a class of nonlinear neutral delay difference equations of the form ∆(y(n) + p(n)y(n−m)) + q(n)G(y(n − k)) = 0 under various ranges of p(n). The nonlinear function G,G ∈ C(R,R) is either sublinear or superlinear. Mathematics Subject classification (2000): 39 A 10, 39 A 12
متن کاملPeriodic Solutions of Second Order Nonlinear Functional Difference Equations
The development of the study of periodic solution of functional difference equations is relatively rapid. There has been many approaches to study periodic solutions of difference equations, such as critical point theory, fixed point theorems in Banach spaces or in cones of Banach spaces, coincidence degree theory, KaplanYorke method, and so on, one may see [3-7,11,13-15] and the references ther...
متن کاملHomoclinic Orbits of Second-order Nonlinear Difference Equations
We establish existence criteria for homoclinic orbits of secondorder nonlinear difference equations by using the critical point theory in combination with periodic approximations.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Difference Equations
سال: 2007
ISSN: 1687-1839,1687-1847
DOI: 10.1155/2007/96415